
free-from-atom doc11,40

The type ’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(T ;x;a)’ is inhabited (by ’Ax’)

iff there exists a token ”a” and a term y such that a = ”a” in Atom{$n} and x = y in T
such that token ”a” does not occur in y.

Thus free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(T ;x;a)
is true iff a is an atom and there is some member of the equivalence class of x in T

that is free from a.

To see that this defines a type, we note that if a1 = a2 in Atom{n}, then there is a unique token ”a” such that

”a” = a1 = a2 in Atom{n}, and if T1 = T2 in Universe{i} and x1 = x2 in T1,
then any y such that x1 = y in T1 and ”a” does not occur in y also satisfies
x2 = y in T2 and ”a” does not occur in y.

Thus we justify the rule for equality: freeFromAtomEquality .

One base case is ’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(Atom$n;a;a)’ where a ∈ Atom$n

. This is not inhabited because every term y = a in Atom$n
must mention the token ”a” = a (otherwise we could permute (”a”,”b”) and get y = ”b” and hence ”b”=”a”).

Since ’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

1

Not Scanned:
n
->n<-}(Atom$n;a;a)’ is not a type unless ’a ∈ Atom$n’, if we have

’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(Atom$n;a;a)’ as a hypothesis in a sequent

then a ∈ Atom$n, then since free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(Atom$n;a;a)
is not inhabited, the sequent is trivially true.

We thus have the ”absurdity rule”” freeFromAtomAbsurdity .

Another base case is that if ’AtomFree(T ;x)’ then ’Ax ∈ x:T‖a’. This is because
AtomFree(T ;x) is, by definition,
∀a, b:Atom$n. swap(a;b;x) = x
, so we may choose b to be ”fresh” w.r.t. x (i.e. an atom not occuring in x)
and take y = swap(a;b;x) = x
, then whatever token ”a” the atom a evaluates to, will not occur in swap(a;b;x).
So, we have the first triviality rule: freeFromAtomTriviality .

The last base case is when x is a closed term not in which token ”a” does not occur. Then, as long as
’x ∈ T ’,
we have, by inspection, ’x:T‖”a”’
. Currently, we have to relate the tokens ”a” which have parameters of kinds
ut1 or ut2 to the Atom{n} spaces for n=1 or n=2 by explicit matching in the rules, so we need two versions of

this base case rule, one for n=1 and another for n=2. (We are working on a new method for parametrizing the

atom types.) freeFromAtomBase1 freeFromAtomBase2 .

Finally, if ’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(A;x;a)’ and ’free-from-atom{Error: ScanInteger ->

Scan Error: Expecting a number.

2

Successfully scanned:

Not Scanned:
n
->n<-}(u:A→B(u);f ;a)’ then

then for some token ”a”, ”a” = a in Aton{n}, and there are x’ = x in A and
f’ = f in u:A→B(u) such that ”a” does not occur in f’ or x’.
Then f ′(x ′) = f(x) in B(x), and ”a” does not occur in f ′(x ′). Therefore,
’free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(B(x);f(x);a)’.

So we have shown that the application rule freeFromAtomApplication is true.

Note that the contrapositive of the application rule in the form
’(¬free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(B(x);f(x);a))
⇒ ((¬free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(u:A→B(u);f ;a)) ∨ (¬free-from-atom{Error: ScanInteger ->

Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(A;x;a)))’
will not be constructively true.

We define ’inheres{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}

3

(T ; x; a)’ to be the negation, ’¬free-from-atom{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(A;x;a)’

, and we read it as ”a is inherent in x:T”.
It says that it is not possible to find a representative of x in T which avoids ”a”, i.e. that

every member of the equivalence class of x in T must mention the atom a.
Now, if f(x)

must mention a, there can’t be representatives f’ and x’ of f and x which don’t mention a,

so at least one of f or x has no such representative. But since the number of possible representatives is

infinite, we can’t in general decide which of them has this property.
So we don’t have ’inheres{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}

(B(x); (f(x)); a)
⇒ (inheres{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}((u:A→B(u)); f ; a) ∨ inheres{Error: ScanInteger ->

Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}(A; x; a))’ in general.

We tried to define inherence as ’!condition cons
inheres{$n:n}

(T ; x; a)
≡def ∃g:T→ B. (↑matters{$n:n}(a; g; x))’ where

’matters{$n:n}
(a; g; x)’ (read as ”matters”(a,g,x))

was a boolean (provided ’atom-free{Error: ScanInteger ->

4

Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}

(Type; T)’) defined by (nu b.
’¬bg(x) =b g(swap-atoms{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-}(a;b;x))’).

Here, nu b. X[b] means choose a fresh atom b not occring in X and evaluate X[b] to normal form (a boolean in our case)

and evalute to that normal form if it does not mention the fresh b and diverge otherwise.

From this definition we could prove (for types that were atom-free) the strong application inherence property

’inheres{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}

(B(x); (f(x)); a)
⇒ (inheres{Error: ScanInteger ->
Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}((u:A→B(u)); f ; a) ∨ inheres{Error: ScanInteger ->

Scan Error: Expecting a number.
Successfully scanned:

Not Scanned:
n
->n<-:n}(A; x; a))’
from a purported property of ”matters” called

”conservation of matters”. Unfortunately, the ”conservation of matters” property is not true, as shown by the following

counter-example.
Let g <x,y> = ’¬b(x =a y ∧b (¬bx =a ”a”))’,

5

let f = ’λx.<”a”, x>’,
let x = ”a”.
Then g (f x) = g <”a”,”a”> = ’tt’.
Any tokens ”b”, ”c” different from ”a” do not occur in ”a”,g,f, or x, and
g (f swap(a;b;x)) = g <”a”,”b”> = ’tt’
g (swap(a;b;f) x) = g <”b”,”a”> = ’tt’
g (swap(a;b;f) swap(a;c;x)) = g <”b”,”c”> = ’tt’, but
g (swap(a;b;f) swap(a;b;x)) = g <”b”,”b”> = ’ff’.
This example show that it is possible that
’(↑matters{$n:n}

(a; g; (f(x))))
& (¬(↑matters{$n:n}

(a; (λX.g(f(X))); x)))
& (¬(↑matters{$n:n}

(a; (λF .g(F (x))); f)))
& (¬(↑matters{$n:n}

(a; (λF .matters{$n:n}(a; (λX.g(F (X))); x)); f)))’
whereas ”conservation of matters” purported to show that
’(↑matters{$n:n}

(a; g; (f(x))))
⇒ (((↑matters{$n:n}(a; (λX.g(f(X))); x)) ∨ (↑matters{$n:n}(a; (λF .g(F (x))); f)))

∨ (↑matters{$n:n}
(a; (λF .matters{$n:n}(a; (λX.g(F (X))); x)); f)))’

http://www.nuprl.org/FDLcontent/p0 963683 /p85 315505 {free-from-atom!doc}.html

6

